3.296 \(\int \frac{(a+b x)^{3/2}}{x} \, dx\)

Optimal. Leaf size=49 \[ -2 a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b x}}{\sqrt{a}}\right )+2 a \sqrt{a+b x}+\frac{2}{3} (a+b x)^{3/2} \]

[Out]

2*a*Sqrt[a + b*x] + (2*(a + b*x)^(3/2))/3 - 2*a^(3/2)*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]

________________________________________________________________________________________

Rubi [A]  time = 0.0144803, antiderivative size = 49, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {50, 63, 208} \[ -2 a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b x}}{\sqrt{a}}\right )+2 a \sqrt{a+b x}+\frac{2}{3} (a+b x)^{3/2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^(3/2)/x,x]

[Out]

2*a*Sqrt[a + b*x] + (2*(a + b*x)^(3/2))/3 - 2*a^(3/2)*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+b x)^{3/2}}{x} \, dx &=\frac{2}{3} (a+b x)^{3/2}+a \int \frac{\sqrt{a+b x}}{x} \, dx\\ &=2 a \sqrt{a+b x}+\frac{2}{3} (a+b x)^{3/2}+a^2 \int \frac{1}{x \sqrt{a+b x}} \, dx\\ &=2 a \sqrt{a+b x}+\frac{2}{3} (a+b x)^{3/2}+\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b x}\right )}{b}\\ &=2 a \sqrt{a+b x}+\frac{2}{3} (a+b x)^{3/2}-2 a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b x}}{\sqrt{a}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0420943, size = 44, normalized size = 0.9 \[ \frac{2}{3} \sqrt{a+b x} (4 a+b x)-2 a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b x}}{\sqrt{a}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^(3/2)/x,x]

[Out]

(2*Sqrt[a + b*x]*(4*a + b*x))/3 - 2*a^(3/2)*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 38, normalized size = 0.8 \begin{align*}{\frac{2}{3} \left ( bx+a \right ) ^{{\frac{3}{2}}}}-2\,{a}^{3/2}{\it Artanh} \left ({\frac{\sqrt{bx+a}}{\sqrt{a}}} \right ) +2\,a\sqrt{bx+a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(3/2)/x,x)

[Out]

2/3*(b*x+a)^(3/2)-2*a^(3/2)*arctanh((b*x+a)^(1/2)/a^(1/2))+2*a*(b*x+a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.64594, size = 228, normalized size = 4.65 \begin{align*} \left [a^{\frac{3}{2}} \log \left (\frac{b x - 2 \, \sqrt{b x + a} \sqrt{a} + 2 \, a}{x}\right ) + \frac{2}{3} \,{\left (b x + 4 \, a\right )} \sqrt{b x + a}, 2 \, \sqrt{-a} a \arctan \left (\frac{\sqrt{b x + a} \sqrt{-a}}{a}\right ) + \frac{2}{3} \,{\left (b x + 4 \, a\right )} \sqrt{b x + a}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x,x, algorithm="fricas")

[Out]

[a^(3/2)*log((b*x - 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) + 2/3*(b*x + 4*a)*sqrt(b*x + a), 2*sqrt(-a)*a*arctan(sqr
t(b*x + a)*sqrt(-a)/a) + 2/3*(b*x + 4*a)*sqrt(b*x + a)]

________________________________________________________________________________________

Sympy [A]  time = 2.72374, size = 71, normalized size = 1.45 \begin{align*} \frac{8 a^{\frac{3}{2}} \sqrt{1 + \frac{b x}{a}}}{3} + a^{\frac{3}{2}} \log{\left (\frac{b x}{a} \right )} - 2 a^{\frac{3}{2}} \log{\left (\sqrt{1 + \frac{b x}{a}} + 1 \right )} + \frac{2 \sqrt{a} b x \sqrt{1 + \frac{b x}{a}}}{3} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(3/2)/x,x)

[Out]

8*a**(3/2)*sqrt(1 + b*x/a)/3 + a**(3/2)*log(b*x/a) - 2*a**(3/2)*log(sqrt(1 + b*x/a) + 1) + 2*sqrt(a)*b*x*sqrt(
1 + b*x/a)/3

________________________________________________________________________________________

Giac [A]  time = 1.13304, size = 59, normalized size = 1.2 \begin{align*} \frac{2 \, a^{2} \arctan \left (\frac{\sqrt{b x + a}}{\sqrt{-a}}\right )}{\sqrt{-a}} + \frac{2}{3} \,{\left (b x + a\right )}^{\frac{3}{2}} + 2 \, \sqrt{b x + a} a \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x,x, algorithm="giac")

[Out]

2*a^2*arctan(sqrt(b*x + a)/sqrt(-a))/sqrt(-a) + 2/3*(b*x + a)^(3/2) + 2*sqrt(b*x + a)*a